
 

 1

DMA Multiplexing for Firewire Isochronous Receive 

Overview 
Unibrain, being the leader in Firewire software for the Windows platform, is pleased 
to announce that in its latest release of the ubCore Firewire driver suite, version 5.50, 
a crucial capability has been added to its arsenal of solutions. 
 
Unibrain’s ubCore drivers now implement the feature known as DMA Multiplexing for 
isochronous receive operations, or MultiDMA for short. This is the ability to receive 
multiple isochronous channels using the same DMA context at the OHCI level. 
 
The OHCI specification requires that an isochronous DMA context must be allocated 
in order to perform operations on an isochronous channel. Each isochronous receive 
DMA context can only be programmed to receive a single isochronous channel 
number. 
Although the OHCI specification allows implementations to support up to 32 
isochronous transmit DMA contexts and 32 isochronous receive DMA contexts, most 
1394 chips typically support 4 isochronous receive contexts and 8 for isochronous 
transmit. There are several implementations that support 8 isochronous receive 
contexts, but the majority supports only 4. 
 
This limitation is crucial on solutions that need to operate more than 4 isochronous 
channels on the same bus, often leading vendors to install multiple Firewire adapters 
on a PC just so that they can have extra DMA contexts available. 
 
However, the OHCI specification allows for exactly one isochronous receive DMA 
context to be configured as “shared”, that is to be set up in a way that it may receive 
isochronous packets from multiple channel numbers. This way the software that 
controls the OHCI chip can overcome the limitation imposed by the number of 
available isochronous receive DMA contexts. 
 

Unibrain Solution 
Programming a DMA context in this “shared” mode is significantly more complex 
compared to the “dedicated” DMA contexts, requiring delicate and timely handling, 
which is the main reason why software vendors had not implemented this feature 
before. 
 
Unibrain has finally made this feature available, in an absolutely transparent way for 
applications. There is no special code required for an isochronous receive operation 
to run on the “shared” MultiDMA context. The binary of the application will run in 
exactly the same manner, regardless of whether it is running on a “dedicated” DMA 
context or on the “shared” MultiDMA context. 
 
Still the application developer can have control of where the isochronous receive 
operations execute and thus configure the solution as desired. 
 
In order to make ubCore 100% backwards compatible and not break existing code 
and running systems, it is possible to operate the Firewire adapter in the “Only 
Dedicated DMA context” mode, in fact this is the default mode of isochronous receive 
operation. 
 



 

 2

The Isochronous Receive DMA mode is now a configuration setting of ubCore. 
Actually it is not only a registry setting that determines how the system operates at 
startup, but can also be changed dynamically for easier testing. 
The setting is actually named DMA Multiplexing Mode, as shown below in the 
ubTweak utility: 
 

 
 

• Always use DMA Multiplexing: When this option is selected, then all 
isochronous receive operations get executed on the “shared” DMA context, 
leaving the rest of the isochronous receive DMA contexts inactive. 
This option has been added primarily for testing reasons. It allows application 
designers to easily stress test the DMA Multiplexing implementation of both 
the software and the underlying 1394 adapter. 

• Disable DMA Multiplexing: This is the default option after the installation of 
ubCore 5.50, for reasons of backwards compatibility. 
When this option is active then all isochronous DMA contexts are operated in 
“dedicated” mode. 

• DMA Multiplexing on the last context: When this option is selected then the 
operation of MultiDMA is enabled. The option name actually describes the 
internal logic of isochronous receive DMA programming. 
When there are more than one available isochronous receive DMA contexts 
then a newly opened isochronous adapter channel is operated in “dedicated” 
mode. When there is only one available, the last free one, then the DMA 
context is operated in “shared” mode. 
This of course means that if there are 4 isochronous receive DMA contexts 
available and the application sets up isochronous receive on 4 channels, the 
fourth will be running on “shared” mode, even though it will be the only one 
sharing the DMA context. 
This is implemented this way because it is technically impossible to shift a 
DMA context from “dedicated” to “shared” without disrupting isochronous 
receive on the context, which would result in at least one failed isochronous 
operation for an application, simply because another application tried to set 
up its own isochronous receive operations. 
In practice however, solution designers usually know the number of 
isochronous operations that will be running at one time, and if they require a 
maximum of 4 then they can simply disable MultiDMA. 

 
Changing the DMA Multiplexing Mode setting from ubTweak saves the new value in 
the registry and optionally immediately applies it. 
 



 

 3

You can also use the MULTIDMA command in FireCommander to see and 
dynamically change the current setting, without saving it in the registry. 
 
Type MULTIDMA /? to see the supported options as shown below: 
 

 
 
Entering MULTIDMA without parameters displays the current setting. 
 
The DMA Multiplexing Mode value can only be dynamically changed when there 
are no isochronous receive adapter channels open. Doing a dynamic change of the 
operating mode is supported mainly for testing reasons, but could theoretically be 
utilized in some specialized scenarios as well. 
 

Performance Considerations 
There are mainly two performance issues to consider with regards to DMA 
Multiplexing: 

• Can the 1394 chip handle heavy loads properly? 
• Is there extra CPU overhead when a DMA context is shared? 

 

DMA Multiplexing Operation under Heavy Loads 
Our experimentation with many different Firewire adapters has shown that all of them 
can handle the maximum isochronous load (100% utilization of available isochronous 
bandwidth) with no errors (FIFO overruns, bad CRCs, etc). 
 
Isochronous data reception works perfectly even if the MULTIDMA mode is set to 
ALWAYS, and the full isochronous load is handled by the “shared” DMA context. 
 
Needless to say, it is not possible for Unibrain to test the hardware-level performance 
of all Firewire adapters available in the market. Solution designers should, as part of 
their hardware evaluation and selection process, test the performance of DMA 
Multiplexing on the actual hardware they consider using. 
 



 

 4

CPU Overhead 
When the isochronous receive DMA context is operating in “shared” mode it is 
potentially receiving multiple isochronous packets per cycle, from different channel 
numbers. It is impossible for the DMA context or the code that controls it to predict 
the sequence that the packets will appear in so that the DMA context could be 
preprogrammed to copy the packets into their target buffers. 
 
This means that all isochronous packets received on the “shared” context are 
received into an intermediate memory buffer. 
 
The driver code that handles the hardware interrupt for isochronous receive, “parses” 
i.e. walks through this intermediate buffer and based on the packet header copies the 
isochronous data at their target buffer. So all data being received through the 
“shared” context are being memory copied by the CPU (DMA is used for getting the 
data from the Firewire adapter into the intermediate buffer). 
 
This extra CPU overhead is a consideration that must be evaluated by solution 
designers when considering utilizing DMA Multiplexing versus additional Firewire 
adapters. 
 
Unibrain measurements indicate that on modern PCs the overhead ranges between 
1% and 2% which is almost negligible, but definitely non zero. On older PCs it may 
get up to 5% or 6%. 
 
For this reason it is suggested that solution designers implement their solutions in 
such a way that the isochronous channels with the biggest payloads operate on 
“dedicated” DMA contexts, while smaller payloads run on the “shared” context. This 
way the amount of data being copied is minimized. 
 

Asynchronous Streams 
From the point of view of the OHCI chip, incoming asynchronous stream packets are 
not different from isochronous stream packets. This means that in order to receive 
asynchronous stream packets an isochronous receive DMA context has to be used. 
With a limited number of isochronous receive DMA contexts on the OHCI chip, this 
issue can be a major headache when there is a mix of asynchronous stream and 
isochronous stream traffic. 
 
Putting all the asynchronous streams on the “shared” DMA context lets designers 
overcome this problem thus gaining significant flexibility in utilizing all the features of 
Firewire. 
 

Conclusions 
DMA Multiplexing is a very important capability that was missing from all Firewire 
software. With this new option at their disposal, solution designers and implementers 
that use the Unibrain drivers can take more fully advantage of the capabilities of 
Firewire hardware. 
 


	DMA Multiplexing for Firewire Isochronous Receive
	Overview
	Unibrain Solution
	Performance Considerations
	DMA Multiplexing Operation under Heavy Loads
	CPU Overhead

	Asynchronous Streams
	Conclusions


